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The energetics of oscillating lifting surfaces in two and three dimensions is calculated 
by the use of integral conservation laws in inviscid incompressible flow for general and 
harmonic transverse oscillations. Wing deformations are prescribed as a function of 
time and total thrust is calculated from the momentum theorem, and energy loss rate 
due to vortex shedding in the wake is calculated from the principle of conservation of 
mechanical energy. Total power required to maintain the oscillations and hydro- 
dynamic efficiency are also determined. In two dimensions, the results are obtained 
in closed form. In three dimensions, the distribution of vorticity on the lifting surface 
is also required as input to the calculations. Therefore, unsteady lifting-surface theory 
must be used as well. The analysis is applicable to oscillating lifting surfaces of 
arbitrary planform, aspect ratio and reduced frequency and does not require calculation 
of the leading-edge thrust. 

1. Introduction 
Certain types of animal locomotion in nature routinely achieve high propulsive 

efficiences. Those of particular interest to the aerodynamicist are the flapping flight of 
birds and lunate-tail swimming propulsion of many fast-moving fish. For high- 
Reynolds-number attached flows, the aerodynamics of such an oscillating lifting 
surface can be calculated from linearized inviscid unsteady aerodynamic theory (for 
small to moderate oscillation amplitudes). Prediction of the propulsive performance of 
such an oscillating lifting surface requires calculation of the energetic quantities, i.e. 
thrust, power required to maintain the oscillations, energy loss rate due to vortex 
shedding in the wake (wake energy) and hydrodynamic efficiency. 

In two-dimensions, the energetic quantities for a harmonically oscillating airfoil 
have been calculated by von Karman & Burgers (1935), Garrick (1936), and Lighthill 
(1970) for a rigid airfoil; by Wu (1961) and Siekman (1962, 1963) for a flexible airfoil; 
by Wu (1971 a) for a flexible airfoil in variable forward speed motion; and by Chopra 
(1976) for a rigid airfoil in heaving motion of large amplitude with small-amplitude 
pitching motion about the local path (rigid wake). 

In three dimensions, the energetic quantities have been calculated by Chopra (1974) 
for a rigid wing using superposition of sinusoidal lifting ribbons; by Chopra & Kambe 
(1977) and Lan (1979) for rigid wings using numerical unsteady lifting surface theory; 
and by Ahmadi & Widnall(l983) for spanwise flexible wings using unsteady lifting-line 
theory which yields closed form results for low reduced frequencies and high aspect 
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ratios. All of these calculations involve direct calculation of the energetic quantities 
including calculation of the leading-edge thrust (suction force). 

This paper presents an alternative approach to the calculation of the energetics of 
oscillating lifting surfaces, using integral conservation laws. The momentum theorem 
is employed to calculate total thrust and the principle of conservation of mechanical 
energy is used to calculate energy loss rate in the wake (wake energy). Input power and 
hydrodynamic efficiency are also determined. Wake energy was first calculated in this 
way by von Karman & Burgers (1935) and Garrick (1936) for a harmonically 
oscillating rigid airfoil. The present analysis is carried out in two and three dimensions 
for general and harmonic transverse oscillations of a flexible lifting surface. 

In steady flow, application of the integral conservation laws gives results for lift and 
drag that depend only on the span distribution of circulation. For unsteady flow 
considerably more detail about the flow is required to calculate lift and drag from these 
conservation laws. 

2. Energetics of an oscillating airfoil 
2.1. Thrust 

Consider a thin, two-dimensional airfoil in small-amplitude transverse oscillation in a 
uniform stream of inviscid incompressible fluid. We calculate thrust by applying the 
momentum theorem to the fluid contained within a fixed control volume V which is 
bounded on the inside by the airfoil surface CT and the wake surface S, and on the 
outside by a far boundary S consisting of S,, S,, S, and S, (figure 1). The coordinate 
system (x, z )  is fixed to the mean position of the airfoil and is stationary with respect 
to the control volume V. The airfoil semi-chord is denoted by c and the abscissa of the 
downstream end of the wake is L. When the wake extends beyond S,! L is taken as the 
abscissa of S,. The free-stream velocity U is in the positive x-direction. 

With body forces neglected, the momentum theorem states that the force exerted by 
the fluid on the airfoil per unit span is given by 

FB(t) = - S, pndS- 1 P Q ( Q . ~ )  d s -  S, $ (PQ) d ~ ,  (1) 
S+S,+u 

where Q is the velocity vector and n is the unit normal vector at the boundaries 
pointing away from V. We consider the unsteady motion of the flexible mid-camber 
line of the airfoil (cT). To obtain the thrust all quadratic terms will be retained in the 
analysis and the actual non-planar airfoil and wake geometry must be considered to 
this order. 

We substitute the perturbation velocity 

q = Q - Ui = ui+ wk (2) 
and the (incompressible) continuity equation 

(Q.n)dS= 0 s S+S,+LT 

into (1) to obtain 

(3) 

(4) 

where u and w are the perturbation velocity components in the x and z directions 

a 
FB(0 = - (2J-P'JndS-P 1 q(Q 4 ~ S - P  Iv %at4 d V, IS S+S,+n 
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FIGURE 1. Control volume for the momentum theorem in two dimensions. 

vortex sheet 

FIGURE 2.  Schematic of airfoil and wake geometry. 

respectively and i and k are the corresponding unit vectors. Thrust per unit span is the 
negative x-component of this vector force, i.e. 

T(0 = - (P -P , )  dS+ Is, (P -P,> dS+p 4 Q - n )  dS+p Iv u d v. ( 5 )  
Is, S+S,tu 

In the first two integrals we use the Bernoulli equation: 

p - p ,  = - p  -+ UU+$(U2+W2) , [Z 1 
where $ is the perturbation velocity potential (q = 04). We convert the volume integral 
in ( 5 )  to a surface integral by use of the gradient theorem. 

where A$ = $u - $I is the jump in velocity potential across the airfoil or wake and LE 
denotes the leading edge. ( ), and ( )1 denote, respectively, the upper and lower airfoil 
or wake surfaces. Wu (1961, 1971~) has shown that near the leading edge of an 
oscillating airfoil $ and &$/at remain bounded. Hence, the integral around the leading 
edge which is over a vanishingly small region is identically zero. A similar integral 
around the trailing edge of the wake is also zero. 

The integral over Sw + CT in (7) is to be carried out only on the upper side of these 
surfaces. Figure 2 depicts a segment of the airfoil or wake vortex sheet where x is the 
distance along the sheet and h(x, t) is the lateral displacement of the sheet from the 
x-axis. It follows from the definition of the velocity potential that 
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where y is the vorticity per unit length and c is a small non-dimensional parameter 
denoting the order of the perturbations. The second form is to be carried out along the 
linearized vortex sheet which lies on the x-axis. The unit normal vector at the non- 
planar sheet is given by 

a h .  
ax 

nu = - z -k+O(c2) ,  

n, = -nu, (9) 

Substituting (8) and (9) into the third integral in (7) and integrating by parts, we 
obtain 

(10) 
a 

-(A$) i -nu dS = h,(L, t )  - T(L, t )  - [y(x, t)] h(x, t )  dx, at  

where ( ), denotes the wake and 

The volume integral in ( 5 )  then becomes 

a'dS+ !$dS+h,(L, t)-T(L, a t ) -  t)]h(x,  t)dx. (12) 
at 

Next, we consider the momentum flux integral over S +  S ,  + CT in (5).  In terms of the 

u(Q.n)dS = - (Uu+u2)dS- Js, uwdS+ IS3 (Uu + 2) dS  + js, uw dS. (1 3 )  

perturbation velocities, the part of the integral which is over S becomes 

Is s,, 
It follows from (2), (9) and the downwash at CT and S,, namely 

h(x, t )  = w(x, t )  ( z  = h(x, t ) )  (14) ax 

that, on these surfaces, 

(1 5 )  
ah 

(Q-n), = - ( Q - n ) ,  = --+O(t.'). 
at 

Using this result, the momentum flux integral over CT and S,  becomes 

(16) 
ah 

u(Q.n)dS = - Au-dS+ u(Q.n)dS, s,,+, at JLE 
where Au = u, - u,. The integral around the leading edge, being over a vanishingly 
small region, is identically zero since at the leading edge (Q.n) is finite and u has an 
integrable singularity. A similar integral around the trailing edge of the wake is likewise 
zero. It can be shown using the intrinsic coordinate system (s,n) (figure 2), that 

AU = y+ O(c3). 
Hence, 

a jrc at 
u(Q.n)dS = - y(x, t ) -h(x,  t)dx. 
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Substituting the above results into (5), we obtain 

(W2-U2)dS-;p 
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It can be shown that, as the far boundary S is removed to infinity, the integrals over 
S,, S, and S, in (19) vanish. Hence, 

a 
at 

(~~-u')dS+ph,(L, t)-T(L, t)-p t)h(x, t)]dx. (20) 

This result is valid for arbitrary small-amplitude transverse oscillations of the airfoil 
and vanishes in the limit of steady flow in accordance with d'Alembert's paradox. 

For harmonic oscillations, we use the unsteady airfoil theory of Schwarz (1940; 
Schwarz's theory is also presented in Bisplinghoff, Ashley & Halfman 1955) together 
with (20) to calculate thrust. Here, in analogy with steady flow, we refer to S, as the 
Trefftz plane (L-t a). The amplitude of the airfoil circulation and wake vorticity are, 
respectively, given by - 

r = ce-jkfi, (21) 
Y,(x) = - j k f i  e-@X, (22) 

where k = wc/U is the reduced frequency, fi is the reduced circulation, j is the 
temporal complex unit 2/ - 1, and (") denotes complex amplitude with respect to j .  

where H z )  is the Hankel function of the second kind of order n. 
linearized downwash at the airfoil : 

is the prescribed 

h",(X)ei"t (1x1 < c, = o f ) ,  (24) 

where ( ), denotes the airfoil. 
It follows from (ll) ,  (21) and (22) that 

f ( ' ( ~ )  = cfie-j"~, 

Substituting (26) into (20), we obtain 

T(t) = -(p/s3(w2-u2)dS-pU~,(L, t)y,(L, t ) -p  rc -[y(x, k t)h(x, t)]dx. (27) 

The average thrust per unit span is given by 

T =  -pUh,(L, t)y,(L, t)-ip (i;Z-Z')dS. s,, (28) 

12-2 
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FIGURE 3 .  (a) Thrust-type wake (a-p = n); (b) drag-type wake (u-p = 0), (the strength and 
sense of local vorticity is indicated by curved arrows). 

It is shown in Appendix B that for harmonic oscillation in the far wake 
- -  

u2 = w2. (29) 

T =  -pUh,(L, t)y,(L, t) .  (30) 

Hence, the average thrust per unit span reduces to 

In the absence of the mechanism of diffusion, the wake vorticity is convected 
downstream without change. Hence, y,(L, t )  is given by (22). The determination of 
h,(L, t ) ,  on the other hand, requires some calculation, since the ultimate displacement 
of a wake element is determined by its entire past history, determined by the varying 
field of downwash along its path from the trailing edge to the Trefftz plane; h,(L, t )  of 
the wake is calculated in the next section. 

We end this section with an examination of the phase relationship between far wake 
displacement and vorticity. Let, 

h,(L, t )  = Ih,l ejor Pt, 
y,(&t) = lywl& e > 

(3 1) 
(32) 

where the amplitude and phase of h,(L, t )  and y,(L, t )  are, respectively, denoted by lh,l 
and lywl, and a and /3. Substituting these in (30), we obtain 

(33) 
For the purpose of discussion, we assume that Ih,J and Jy,J are fixed and consider the 
following special cases. 

(i) If a-/3 = in, T = 0. It can be seen from the results of Appendix B that the self- 
induced downwash of a linearized wake with sinusoidally varying strength is out of 
phase with the vorticity distribution by fn. Hence, the self-induced displacement of 
such a wake is also out of phase with the vorticity by in  and the corresponding 
contribution to the average thrust is zero. 

(ii) If a-/3 = n, we have the case of maximum average thrust (for fixed (h,( and 
IyJ). This does not necessarily correspond to the optimum motion which is the 
solution of a constrained variational problem (Ahmadi & Widnall 1983; Wu 1971 b). 

(iii) If a - /3 = 0, we have the case of maximum average drag (for fixed lh,l and Iy,l). 
(iv) Cases with 0 < a-/3 < i n  correspond to those shapes and motions of the airfoil 

which, in the average, produce drag, whereas cases with in < a - p  < n correspond to 
thrust-producing configurations. Figure 3 shows a thrust- and a drag-type far wake 
corresponding to cases (ii) and (iii) in the above. 

The equation of average thrust can be interpreted as the average flux of momentum 
associated with the wake vortices crossing the Trefftz plane. For positive thrust the 

'p  j w t  

T = -;pup,[ lywl cos(a-P). 
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displacement of wake vorticity gives rise to a net flux of momentum in the downstream 
direction; for drag to a net flux of momentum in the upstream direction. The Karman 
vortex street is a drag-type wake. 

2.2. Asymptotic wake displacement 
We showed in the above that the average thrust per unit span of a harmonically 
oscillating airfoil is proportional to the time average of the far-wake displacement and 
vorticity. Since thrust is O(e2) and the wake vorticity is O(e), we need to determine the 
wake displacement only to O(e). This can be accomplished using a linearized (planar) 
wake model as shown below. 

The linearized downwash at the wake is given by 

W,(x, t )  = -+ u- h,(x, t )  (x 2 c, z = 0 -t ). (34) (:t ay 
For harmonic motion this reduces to 

(3 5) 

To obtain the wake displacement, we invert (35) by multiplying through by gwx and 
integrating from the trailing edge up to x > c. 

d -  
dx Ww(x) = jwh",(x) + u- h,(x) (x 2 c, z = o +). 

h",(x) = h"(c) e-ja(z-c) + UP1 1 @,([) e-ja(s-c) d[ (x 2 c). (36) 

Downwash at the plane of the wake, m,, is given by 

where the first term is the contribution of the airfoil and the second is that of the wake. 
The vorticity distribution on the airfoil is given by (Schwarz 1940) 

Substituting (38) into (37), interchanging the order of integrations in the first two terms 
and making use of the first two integrals in Appendix A, we obtain 

(6 2 c,z = O - t ) ,  (39) 

where the first term is the quasi-steady contribution and the second term represents all 
direct and indirect contributions from the wake. 

Substituting (39) into (36), we obtain 
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Here, the first term is the displacement of a rigid wake which is the sinusoidal trace of 
the trailing edge. The second term is due to the quasi-steady effects and the third term 
represents all direct and indirect contributions from the wake. 

The asymptotic displacement of the wake h"(L) is obtained from (40) by setting 
x = CE in the upper limit of the integrals. 

The double integral in the last term is evaluated in Appendix A. In the limit of steady 
flow, this asymptotic displacement of the wake contains a logarithmic singularity 
which arises from the second term of (41) and can be expressed as logL or logk. 

Substituting (A l l ) ,  (41) and (22) into (30) and introducing the non-dimensional 
quantities 

X* = X/C, h* = h/c ,  W: = WJU,  Q* = Q / U ,  C, = T/$T~U'CC], (42) 

we obtain the following expression for the thrust coefficient of a harmonically 
oscillating airfoil 

-+n:kl6*1' [Ji(k) + Y,(k)] . (43) I 
where Rj denotes real part with respect to j and ( )* denotes complex conjugate. This 
form has the advantage that it relates the thrust to the airfoil shapes and motions. 

We end this section with an example. Consider an airfoil in heaving motion where 

h,(x, t)  = h, dwt (1x1 < c), 

~: = jkh; (Ix*l d 1,z* = O-t-). 

(44) 

(45) 

Substituting (45) into (23) and (43) and using the following integrals (these can be 
obtained from certain integrals on pp. 251-252 of Ashley & Landahl 1965) 

we obtain the known result for the thrust coefficient of a heaving airfoil (see, e.g. Wu 
1971 b). 

CT, = 4k2D(k) h;', (48) 

(49) 

where ( ) H  denotes heaving motion and 

D(k) = [F'(k) + G'(k)], 
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FIGURE 4. Control volume for conservation of energy in two dimensions. 

F and G are, respectively, the real and imaginary parts of Theodorsen's function 
(Theodorsen 1935): 

Next, we calculate the wake energy. 

2.3 Wake energy 
We now consider the energy in the wake of the airfoil. Since the fluid is non-dissipative 
and incompressible, the work done by the airfoil on the fluid ultimately shows up in 
the far wake in the form of kinetic energy. We apply the principle of conservation of 
mechanical energy to the fluid in a fixed control volume V bounded on the inside by 
the airfoil and wake surfaces, CT and S,, and on the outside by a far boundary S 
(consisting of S,, S,, S, and S,) which is located infinitely far from the airfoil and wake, 
as shown in figure 4. The fluid contained in V is thus free of discontinuities. 

The coordinate system ( X , Z )  is at rest with respect to the undisturbed fluid; the 
parallel coordinate system (x, z )  moves with the airfoil mean velocity U in the negative 
X-direction. The (x, z )  observer measures a velocity field Q consisting of a free stream 
Ui and a perturbation field q.  The control volume V is at rest with respect to the 
( X ,  2)  frame. 

With body forces neglected, the balance of energy for the fluid in V with respect to 
the ( X , Z )  frame is ~ r 

which states that the rate of change of the total kinetic energy of the fluid in V is equal 
to the rate of work of the external forces on the same fluid. Since pressure is continuous 
across the wake, the integral over S, is zero. Also it can be shown that, for S infinitely 
removed from the airfoil and the wake, the integral over S vanishes as well. The 
integral over the airfoil surface can be written as the sum of integrals over the upper 
and lower surfaces and the leading and trailing edges of the airfoil, namely 
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where TE denotes the trailing edge of the airfoil. The latter integral is identically zero 
owing to the Kutta condition. The integral around the leading edge is the rate of work 
of the leading-edge suction force T, on the fluid, i.e. UT,. 

In (52), 4 is the velocity of the airfoil mid-camber line 

(53) 
a 

4=-Ui+-hh,k,  
a t  

and n is the unit normal vector at the airfoil, with respect to the ( X ,  Z )  frame : 

a 
nu = -hai-k+O(c2), ax 
n, = -nu. (54) 

Using (53) and (54), the integrals over the upper and lower surfaces of the airfoil may 
be combined to obtain 

where T p  = l I IAp&hadX (56) 

is the thrust contribution from the normal force at the airfoil. 
Combining the above results and noting that T = T,+ q, (51) becomes 

Averaging this over the time interval 7, we obtain 

1 T E  7 
- A(KE) = - U T -  
7 J L E  a t  

Ap - ha dX, 

(59) 
where -AWE) 1 = 'i [JvIPI4l2dV] -[JvtPlqlzdV]t=tj 

7 7 t=tO+T 

is the average rate of change of the total kinetic energy of the fluid in V during 7. to is 
an arbitrary constant and (-) denotes time average. 

Equation (58) states that the average power required to maintain the airfoil 
oscillations is equal to the average rate of work of thrust plus the average rate of 
increase of the kinetic energy of the fluid. The latter is the average energy loss rate, i.e. 
energy imparted to the fluid which cannot be recovered. Denoting the latter by E and 
the average power required by P, (57) becomes 

P =  U T + E  or C,= C,+cE. (60) 

C, = Z/[+pU3c],  c, = P/[&pU3c]. (61) 

where CE and C, are, respectively, the energy loss rate and input power coefficients 
which are defined by 
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FIGURE 5. Control volume for calculation of wake energy. 

Thus, the input power is partly used to produce thrust, and thereby useful work, and 
partly wasted in generating a wake of vorticity. The hydrodynamic efficiency of the 
motion is defined as the ratio of the useful power to the input power, i.e. 

7 = c,/c, = 1 - C,/C,. (62) 

For harmonic oscillations of radian frequency o, we choose 7 to be the period 2x10, 
during which time one wavelength h = 2xU/w of the periodic wake is generated. 
A(KE) is then the kinetic energy content of one wavelength of the far wake. This can 
be seen by comparing the flow field at times t and t + 7. The only difference is that the 
far wake for t + 7  is one wavelength longer than that for t. Hence, A(KE) is the kinetic 
energy content of a slice of the far wake of length A, as shown in figure 5.  From 
potential flow theory, the kinetic energy of the fluid in this volume is given by 

where S' consists of S;, Sg, S;, S;, Swu, and SwL. Owing to the periodicity of flow 
properties in the far wake (Appendix B), the integrals over Si and S; cancel each other 
out. As the lateral boundaries Sg and Si are removed to infinity, the integrals over these 
surfaces vanish since from Appendix B 

4, u, w - e-"IZI. (64) 

The integrals over the upper and lower wake surfaces can be combined using (54) to 
obtain 

X,+A 

A(KE) = - :p lx, A$; I dX, 
z=o 

where we have neglected terms of O(e3) and X,, is an arbitrary constant. The waviness 
of the wake, thus, does not appear to this order. We note that, while a planar wake is 
adequate for calculating the wake energy, the actual wake geometry must be 
considered for calculating thrust from the momentum theorem. This is because energy 
is a scalar quantity, whereas momentum is a vector quantity which is sensitive to 
changes in direction. 
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Equation (65) is essentially the spatial average with respect to X over the interval h 
(analogous to the time average) of Aq5 and aq5/aZ. Denoting this spatial average by 0, 
we have 

For convenience, we evaluate Aq5 and aq5/aZ with respect to the moving frame and then 
transform the results to the stationary frame. With respect to the (x, z )  frame, it follows 
from (8), (21) and (22), that 

Aq5(x, t )  = cfie-e-jax&wt (x < c). (67) 

The self-induced downwash at the plane of the wake is calculated in Appendix B:  

(68) 
a 
az - $(x, 0, 1) = - :,J& e-jax &*t. 

The above results are transformed to the stationary frame using 

x =  X+Ut ,  z= z. (69) 

Thus, A$(X+ Ut)  = cfie-jax, (70) 

Hence, the ( X , Z )  observer sees a steady flow field in the far wake. 
It follows from (70), (71), (66) and (58) that the average energy loss rate is given by 

- 

E = :pUcklfi12. (72) 

Since Ap and ahlat are physically the same in both frames, the average power required 
can be expressed in the moving frame as 

- a 
P = - /Ic Ap(x, t )  - ha@, t )  dx. 

at (73) 

Introducing the non-dimensional quantities in (42) and 

Z*  = z / c ,  t* = t / ( c /U) ,  AC, = Ap/(ipUz), (74) 

(72) and (73) become 
1 c - -kp3*12, 

C, = T/-lAC,(x*, -2 t*)-h*(x*, a t*)dx*. 

- 27t 

at* a 

(75) 

(76) 

C, is then calculated from (60). 
Calculation of C, requires the unsteady pressure distribution on the airfoil. Ashley 

& Landahl (1965) give an efficient method of calculating AC,. Their equation (13-54) 
in the present notation is (a misprint has been corrected) 
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where f i s  the auxiliary function 

We end this section with two examples. First, we consider an airfoil in heave where 
(see (44) and (45)) 

Using the identity 
P; =jkh,* (IX*l < 1,z* = Ok). 

B(k) = F- (P2 + G2)  = 
nk[(J, + r,y + (-K -JJ2I (79) 

from Garrick (1936), the energy loss rate is obtained from (75), 

CEH = 4k2B(k) ht2.  (80) 

The pressure distribution on the airfoil is obtained from (77), 

Ac,(x*) = -4jkh; { C ( k ) [ - ] + j k ( l  -x*'):), 

where we have made use of certain integrals from Van Dyke (1956). The input power 
is obtained from (76), 

The thrust is calculated from (60) and found to be the same as in (48), as expected. The 
hydrodynamic efficiency for the motion is given by 

CPH = 4k2F(k) ht2. (82) 

T H  = D(k)/P(k)' (83) 

Secondly, we consider an airfoil in pitching motion about the midchord where 

h,(x, t )  = (1x1 < c), 
P p ( X * )  =jkax*+a ( I X * l <  1,z* = O f ) .  

CE, = (4 + k2) B(k) 2. 

The energy loss rate is obtained from (75), 

From (77), 

(84) 

(85) 

*2  

l-X* a 
A(?#*) = - 4a [ i jk  + (1 + i j k )  C(k) +jkx*] [-] +jk( 1 + ;jkx*) (1 - x )2 , (87) 

where we have made use of certain integrals from Van Dyke (1956). The input power 
is then obtained from (76). 

where ( ) p  denotes pitching motion. The thrust is obtained from (60), 

{ 

Cp, = k[k( 1 - F )  - 2G] a', (88) 

C,, = 4k2[($+;)D(k)-($+;)F(k)-(;k)G(k)+f  1 2. (89) 

The corresponding hydrodynamic efficiency 7 is obtained from (88) and (89). 
The above results for the energetics of an airfoil in heave and pitch are in complete 

agreement with the known results obtained by direct calculation and calculation of 
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FIGURE 6. Thrust coefficient and hydrodynamic efficiency for an airfoil in pitch and heave. 

leading-edge thrust (see, e.g. Wu 1971 b). Thrust and hydrodynamic efficiency of heave 
and pitch are plotted in figure 6. Heaving motion produces thrust at all reduced 
frequencies. Pitching motion, on the other hand, produces drag except for k > 1.781. 
The efficiency of heaving motion starts at 100% for k = 0, drops off rapidly with 
increasing k and approaches 50 YO as k + co. The efficiency of the pitching motion is 
defined only for k > 1.781, where it increases monotonically and approaches 50% as 
k + 00. Much higher efficiencies can be achieved from suitable combinations of pitch 
and heave (see Ahmadi & Widnall 1983; Wu 1971b). 

3. Extension to three dimensions 
We now extend the analysis to three dimensions to calculate the energetic quantities 

for flexible lifting surfaces of finite span. Again, we use the momentum theorem to 
calculate total thrust and conservation of energy to calculate wake energy. 

3.1. Thrust 
Consider a thin, almost-planar wing of finite span undergoing small-amplitude 
transverse oscillations in a uniform stream. To calculate the total thrust from the 
momentum theorem, (I), we select a far boundary S consisting of a right circular 
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FIGURE 7. Control volume for the momentum theorem in three dimensions. 

cylinder S, which is parallel to the main flow and two circular disks S, and S, of radius 
R, as shown in figure 7. We substitute the perturbation velocity 

q = Q - U i = ~ i + v j + ~ k ,  (90) 

and the continuity equation into (l), take the x-component of the result and use the 
Bernoulli equation and the gradient theorem to obtain the total thrust. 

(u2+w2-u2)dS+p (uvcosO+uwsinO)dS 

- i p  Js, (u2 + w2 - u2) dS+p y(Q.n),  dS, (91) 

where y is the spanwise component of vorticity, v a n d j  are the perturbation velocity 
component and the unit vector in the y-direction, respectively, and the angle 8 is 
measured from the y-axis in the ( y ,  z)-plane in the positive direction of rotation about 
the x-axis (figure 7). In arriving at (91), integrals of ( a $ / a t ) i - n  and u(Q.n)  around the 
edges of the wing and wake vortex sheets vanish. 

Using (1 5) ,  

(92) 
a h .  ah 

n, = - z + - j - k + 0 ( c 2 ) ,  nl = -nu, ax ay 

and 

in (91) and integrating by parts in the next to the last term, we obtain 

(v2 + w2 - u2) dS+p u(v cos 8+ w sin 0) dS  

Here, 

where xz, xt and L are, respectively, the abscissae of the wing leading and trailing edges 
and that of the wake trailing edge. It can be shown that, as the far boundary S is 
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removed to infinity, the integrals over S,  and S,  vanish. The integral over S,  in general 
must be retained since, in the long-time limit, the wake usually crosses S, and the 
integral is expected to be non-zero. Equation (94) then reduces to 

UY) a 
dx t [y(x, Y ,  0 h(x, Y ,  01. (96) -' r b  dY Jz,( y) 

This result is quite general, being valid for arbitrary small-amplitude transverse 
oscillations of a lifting surface of arbitrary planform, aspect ratio and reduced 
frequency. It can be shown that, as the wing semi-span b tends to infinity (96) reduces 
to its two-dimensional counterpart, (20). Also, in the limit of steady flow, the classical 
result for induced drag is recovered. 

For steady-state harmonic oscillations the wake extends far beyond S, (L  + a). 
After Reissner (1947; Reissner's theory is also presented in Bisplinghoff et al. 1955), we 
define a reduced circulation function 

(97) 
1 

CO 
&Y) = --xp Cjisxt(Y)) m, 

where co is the root semi-chord. Reissner shows that the spanwise component of wake 
vorticity is given by 

where k, = oc,/U is the reduced frequency at the wing centre section. 

qw(x, Y )  = -jko @Y)  e-jws (x 2 x,(y>), (98) 

Substituting (97) and (98) into (95), we obtain 

T(L, y ,  t )  = c, Li(y) e-jaL &wt, (99) 

(100) 
0 
- T ( L Y ,  0 = - UY,(&Y, 0.  
at 

Substituting this into (96), we obtain the thrust of a harmonically oscillating wing. 

This is the three-dimensional counterpart of (27). 
The average thrust is given by 

where both integrals are to be evaluated over the Trefftz plane. This is the three- 
dimensional counterpart _ _  of (28). Evaluation of the first integral in (102) requires 
knowledge of u2, v2 and 2 in the far wake. These are calculated in Appendix C in terms 
of integrals involving d and dfildy which in general must be evaluated numerically. 
Evaluation of the second integral in (1 02) requires the spanwise vorticity distribution, 
which is given by (98), and the displacement of the far wake. 
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FIGURE 8. Control volume for conservation of energy in three dimensions. 

For reasons already cited, we calculate the wake displacement from a planar wake 
model by inverting the linearized downwash at the wake. The result is 

h" , kY)  = h"(x,(y),y)exp(-jiS(x--x,(y)))+ u - f  w,(67y)exp(-jiS(x-65))d6 
X,(Y) 

(x 2 X,(Y>) .  (103) 

The asymptotic value of h" is obtained from this by setting x = 00 in the upper limit of 
the integral. Evaluation of (103) requires the downwash at the plane of the wake which 
is induced by the wing and wake vorticity. For (x,y) on the projection of the wake on 
the (x, y)-plane, 

where ( ), denotes the wing and 6 is the streamwise component of vorticity which is 
taken positive in the negative direction of rotation about the x-axis. 

From Reissner (1947) 

It follows from (97) that 
6",(x, y )  = c, dfi/dy e-j"". 

8, is obtained from the continuity of vorticity on the wing. 

Hence, once the bound vorticity ya is determined, everything else can be determined. 
In the absence of an exact theory to calculate ya, one must use a numerical or 
approximate unsteady lifting-surface theory, many of which are available. 

Next, we calculate the wake energy. 

3.2. Wake energy 
Again, we adopt the viewpoint of the observer fixed in the fluid and consider a lifting 
surface moving with velocity U along a rectilinear path in the negative X-direction 
while executing small-amplitude transverse oscillations, as shown in figure 8. The 
balance of energy for the fluid in V is given by (51) where the cylindrical far boundary 
S is located infinitely far from the wing and wake. 
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As in two dimensions, it can be shown that the right-hand side of (51) is the rate of 
work of total thrust T and unsteady lift, i.e. 

where S, is the wing planform area. Taking the time average of (108) over the interval 
7 and rearranging, we obtain 

1 
= UT+-A(KE): 

7 

where 1/7A(KE) is defined in (59). This is a statement of conservation of energy for 
the present problem. Denoting the average total power required and energy loss rate, 
respectively, by P and E, (109) becomes 

where the non-dimensional coefficients are defined as 
P = U T + E  or C,=C,+C,, (1 10) 

c, = P/[+7cpU3(;sa)], c, = T/[&pU2($S,)], c, = E/[;7cpu3(;sa)]. (111) 
The hydrodynamic efficiency is defined in (62). 

A(KE)  can be determined from the properties of the far wake, namely 
For harmonic oscillations we choose 7 to be the period 27clo. As in two dimensions, 

A(KE) = -+A /:b A# a#/az lz=()d7' (1 12) 

A$ is determined, with respect to the moving frame, using (93), (97) and (98). 

Downwash at the plane of the wake is obtained from (C 6), as z + 0 & . 
A&x,Y) = c,, fi(y) E-~" (X >, X,(Y)) .  (113) 

where the K, are modified Bessel functions of the second kind of order n and the sgn ( z )  
function is - 1 for z < 0 and 1 for z > 1. In the limit of steady flow, (1 13) and (1 14) 
reduce to the classical steady results. 

The above expressions for A$ and a@/az are transformed to the ( X ,  Y ,  2) frame to 
obtain 

A$(X+ Ut, Y) = c,, fi(y) e-jwx, (115) 

The average energy loss rate is obtained from (1 15) and (116). 
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The average total power required to maintain the wing oscillations is given by 

(1 18) p - = -[bd.I/~;;;;dtAP(t,.I, t)&tt'.I> c? 0. 

The total thrust is then obtained from the balance of energy, (1 10). The present method 
requires fi which must be obtained from unsteady lifting-surface theory, as pointed out 
above. 

In the limit of steady flow, the above result for E yields half of the known induced 
drag. The factor of a half arises from time averaging which is not relevant in steady 
flow. 

4. Summary 
An alternative approach based on integral conservation laws has been presented for 

the calculation of the total energetic quantities for two- and three-dimensional lifting 
surfaces oscillating in inviscid incompressible flow. The method is applicable to lifting 
surfaces of arbitrary planform, aspect ratio, mode of oscillation (small amplitudes), 
and reduced frequency; and does not require calculation of the leading-edge suction 
force, whose accurate evaluation is usually difficult in three dimensions. 

The analysis is carried out for arbitrary and harmonic transverse oscillations. In two 
dimensions, the latter results are obtained in closed form. In three dimensions, the 
vorticity distribution on the lifting surface is required as input to the calculations. 
Hence, unsteady lifting-surface theory must be employed as well. 

This work was sponsored by NASA grant NGR 22-009-818. This support is 
gratefully acknowledged. 

Appendix A. Evaluation of integrals 
The following integrals arise in the two-dimensional analysis. 

I. The integral 

can be evaluated from the contour integral 

where 
defined with a branch cut from 5 = -c  to 6 = c. The result is 

= x+iz and the integration contour is shown in figure 9. The integrand is 

11. The integral 
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FIGURE 9. Integration contour for (A 2). 

FIGURE 10. Integration contour for (A 5). 

can be evaluated from the contour integral 

Again the integrand is defined with a branch cut from C = - c to 5 = c and the contour 
of integration is shown in figure 10. The result is 
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111. The double integral 

can be evaluated after differentiation with respect to k = isc which uncouples the 
integrals. The resulting integrals can be expressed in terms of certain known integrals 
(Ashley & Landahl 1965): 

where ( )* denotes complex conjugate. Substituting these results into (A 7), expressing 
the Hankel functions in terms of Bessel functions and integrating with respect to k,  we 
obtain 

J," + Y,2 - J,"(O) - yO(0) +j  (J," + Y," - J i  - Y,") dk, + C' . (A 10) 1 
The constant of integration C' is determined by direct evaluation of 13, (A 7), for some 
value of 6 (or k). Using the method of stationary phase (Carrier, Krook & Pearson 
1966), it can be shown that I ,  tends to zero as o (or k)+ 03. Using this condition in 
(A lo), we find 

1, = ($)2 c { Ji(k) + &,(k) - j  [J: + y,2 - J," - Y,2] dk, (A 11) 

We do not need to evaluate the remaining integral here since it does not enter the 
expression for average thrust (see (43)). 

Appendix B. Far wake perturbation velocities in two dimension 
Here, we calculate the perturbation velocities in the far wake for a harmonically 

oscillating airfoil. Consider a two-dimensional wake extending infinitely far upstream 
and downstream of the Trefftz plane. Since u and w appear only in quadratic form in 
the expression for thrust, it suffices to calculate them from a linearized wake model. 
The strength of the wake vorticity is given by (see (22)) 

Yw(x,) = -jkQ exp (-jisx,). 

The Cartesian coordinate system (x,,z) is attached to the plane of the wake at the 
Trefftz plane (x, = 0) and stationary with respect to (x,z). 

w 

The perturbation velocity potential in the far wake is given by 

Making the change of variables Y,I = x , - 5  and integrating by parts once, we obtain 
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The imaginary part of this integral is identically zero, owing to symmetry. The real part 
is given by (Dwight 1961) 

The perturbation potential then becomes 

$<x,, z )  = cfi exp (-j isx,)  exp ( - is~zl) sgn ( z )  

~ " ( x , ,  z )  = = -;jkfi exp (-jisxl) exp (- islzl) sgn ( z )  
G(x,,  z )  = = -;kQ exp ( -jisx,) exp (- islzl) ( z  + 0). 

( z  =I= 0). (B 4) 
The perturbation velocity components in the far wake are obtained from (B 4) by 

differentia tion. 

(z * 01, (B 5 )  
(B 6) 

- 
As a check we note that, as z + 0 f , 

* 

zi = f +jkQ exp ( -jisxl), 

(B 7) 
which are consistent with the symmetry properties of vortex sheets in unsteady motion. 

The average of the square of the perturbation velocities in the far wake are given by 

(B 8) 

- 
6 = -+kQ exp (-jisxJ, 

u2(xl, z )  = w2(xl, z )  = ;k2lfil2 exp (-2islzl). 
- 

Thus, in the far wake with respect to the body frame, u and w vary sinusoidally with 
x, but u" and 2 are independent of x. 

Appendix C. Far wake perturbation velocities in three dimensions 
Here, we calculate the perturbation velocities in the far wake of a harmonically 

oscillating wing of finite span. Again, it suffices to calculate u, z i  and w from a linearized 
wake model. We consider a wake extending infinitely far upstream and downstream of 
the Trefftz plane and choose a Cartesian coordinate system (xl, y ,  z )  which is stationary 
in the (x, y ,  z )  frame. The Trefftz plane coincides with the ( y ,  2)-plane and the wake is 
defined by IyJ < b, z = 0. The components of wake velocity are given by (98) and (105). 

It follows from the Biot-Savart law and (98) that u is given by 

U"(x,, y, z) = - - jkn 1 z lb dy 1;' d[n"(y) epiGc R L ~ ,  47c 

where R, = ((x, - 6)' + ( y  - y)z + 2,):. The integral over [ can be expressed in terms of 
modified Bessel function of the second kind Kl (Abramowitz & Stegun 1970). 

(C 2) 
1 

zi(x,, y ,  z )  = -----jki zexp ( -jaxl) fi(y) R;' Kl(isR,) dv, 2ncn 

where R, = ( ( y  - y), + z');. It follows from the Biot-Savart law and (105) that 0 is given 
by 

d -  
d[- Q(y) exp (-jisLJ RL3 

1 qx,, y ,  z )  = - co z 
47c /:bdyJ;m dy 

The integral over [ can be expressed in terms of K,. 
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Using the asymptotic expansion for K,, it can be shown that as z-t 0 Ifr , the integrals 
in (C 2) and (C 4) each contain a second-order singularity, ( y - ~ ) - ' ,  and must be 
interpreted according to the principle value of Mangler (1951). 

It follows from the Biot-Savart law and (98) and (105) that w is given by 

The integral over 6 in the first term can be expressed in terms of Kl and the one in the 
second term can be expressed in terms of KO (Abramowitz & Stegun 1970). 

Using the asymptotic expansion for K,, it can be shown that as z + 0 & , the integral in 
(C 6) containing Kl has a first-order singularity, ( y  - 7)-', and must be interpreted as 
a Cauchy principal value. 
- _  The above results show that in the far wake u, v and w vary sinusoidally with x, but 
u2, v 2  and w" are independent of x. In the limit of steady flow, the above expressions 
for u, v and w reduce to their known steady values. 
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